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Abstract. For two-dimensional Schrödinger Hamiltonians we formulate boundary conditions that split the
Hilbert space according to the chirality of the eigenstates on the boundary. With magnetic fields, and in
particular, for Quantum Hall systems, this splitting corresponds to edge and bulk states. Applications to
the integer and fractional Hall effect and some open problems are described.

PACS. 73.40.Hm Quantum Hall effect (integer and fractional) – 71.70.Di Landau levels –
02.60.Lj Ordinary and partial differential equations; boundary value problems

The theory of the Quantum Hall effect has been torn
between several schools of thought: one stresses the two-
dimensional bulk aspects of the interior [1]; another em-
phasizes the importance of the one dimensionality of the
edge [2] and other points of view focus on the interplay
between bulk and edge [3]. It is therefore remarkable that,
in spite of this, the notion of bulk and edge of a quantum
system is not formulated as a sharp dichotomy even for
idealized situations. Classically, there is such a dichotomy
for billiards in magnetic fields: orbits that lie in the inte-
rior rotate one way, say clockwise, while orbits that hit the
edge make a skipping orbit and rotate counter-clockwise
[4]. Bulk and edge are therefore distinguished by the chi-
rality relative to the boundary. Our purpose here is to for-
mulate a corresponding dichotomy in quantum mechanics.
As we shall explain this can be achieved by imposing cer-
tain chiral boundary conditions for Schrödinger and Pauli
operators.

The chiral boundary condition we introduce is sensi-
tive to the direction of the (tangential) velocity on the
boundary. For (separable) quantum billiards this enables
us to split the one particle Hilbert space into a direct sum
of two orthogonal, infinite dimensional spaces with posi-
tive and negative chirality on the boundary. In the pres-
ence of a magnetic field, this split gives a Hilbert space
for edge states, He, and a Hilbert space for bulk states,
Hb, such that the full Hilbert space is H = He ⊕ Hb.
Subsequently we shall explain how chiral boundary condi-
tions are formulated for Schrödinger Hamiltonians which
do not necessarily correspond to separable billiards, i.e.
Schrödinger Hamiltonians with background potential and
electron-electron interactions.
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The chiral boundary condition we introduce is a rela-
tive of a boundary condition introduced by Atiyah, Patodi
and Singer (APS) in their studies of Index theorems for
Dirac operators with boundaries [5]. However, the chiral
boundary condition we shall introduce differs from it in
an important way, as we shall explain below.
The splitting of the Hilbert space comes with a split-

ting of the quantum billiard Hamiltonian and its spectrum
to a bulk piece and an edge piece. As we shall see, it is a
property of the chiral boundary conditions that the bulk
spectrum has a ground state at precisely the energy of the
lowest Landau level in the infinite plane, and a degeneracy
which is the total flux through the billiard (corrected to
an integer number of flux units by a boundary term). The
bulk energy spectrum has a gap above the ground state,
which for separable billiards, is the gap between Landau
levels in the infinite plane. This gap survives in the ther-
modynamic limit of a billiard of infinite area, the bulk
ground state is guaranteed to be incompressible in this
sense.
In contrast, the edge spectrum, in the thermodynamic

limit of long boundary, is gapless. In this limit, the edge
states have a well defined “sound velocity”, which reflects
the linearity of the dispersion relation at low energies. The
sound velocity v is

v/c = k (h̄/mc)
√
B/Φ0, (1)

where k is a dimensionless (nonuniversal) constant, c is
the velocity of light, h̄mc is the Compton wavelength of the

electron and
√
Φ0/B is the magnetic length. This velocity

is very small in all reasonable magnetic fields.
The splitting of the Hilbert space enables us to de-

scribe charge transport in terms of spectral flow. In partic-
ular, (adiabatic) gauge transformations can transfer states
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between He and Hb. For the semi-infinite cylinder, such a
spectral flow is described below. This generalizes the Index
theory of the Integer quantum Hall effect [6] to systems
with boundaries.
We start with the semi-infinite cylinder for which we

shall illustrate the chiral boundary condition. The Landau
Hamiltonian with chiral boundary condition is separable
and a complete spectral analysis can be made.
Consider the semi-infinite cylinder, M, in IR3, whose

boundary ∂M is a circle with a circumference `:
M = {(x, y) | − ∞ ≤ x ≤ 0, 0 ≤ y < ` }. The ori-
entation of M and the orientation of the boundary, ∂M,
are linked by requiring that traversing the boundary in
the positive direction keeps M on the left hand side.
A constant magnetic field perpendicular to the surface,

of strength B > 0 and with outward orientation acts on
the surface. We take the charge of the electron to be posi-
tive (sic!) so classical (bulk) electrons in the interior of M
rotate clockwise. In addition we assume that a flux tube
carrying flux φ threads the cylinder. We shall regard φ as
a parameter, while B is kept fixed throughout. A gauge
field describing the situation is A(φ) = (0, Bx + φ/`).
The velocity operator, in units m = h̄ = e/c = 1, is
(vx, vy) = (−i∂x, −i∂y −Bx− φ/`). The classical en-
ergy associated to a particle on a billiard is purely kinetic,
E = v2/2. The corresponding quantum Hamiltonian is the
Landau Hamiltonian given formally by the second order
partial differential operator:

2HL(φ) = D
†(φ)D(φ) +B, (2)

where D(φ) = ivx − vy(φ, x) = ∂x + (i∂y +Bx+ φ/`).
For this to define a self-adjoint operator in the one par-

ticle Hilbert space we need to specify boundary conditions
on ∂M.
The chiral boundary condition that we introduce re-

quires different things from the wave function on the
boundary depending on the tangential velocity, vy(φ, x)
at the boundary x = 0. Since vy(φ, 0) = −i∂y − φ/` com-
mutes with D we separate variables, and describe the chi-
ral boundary conditions for the resulting ordinary differen-
tial operators on the half line −∞ ≤ x ≤ 0, parameterized
by m ∈ ZZ and φ ∈ IR:

2Hm(φ) = −
d2

dx2
+

(
2πm− φ

`
−Bx

)2
. (3)

Let

Dm(φ) =
d

dx
−
2πm− φ

`
+Bx. (4)

The chiral boundary condition requires:

Dmfm

∣∣∣
x=0
= 0, if vy(φ, 0) =

2πm − φ

`
≤ 0;

(ivx) fm

∣∣∣
x=0
= 0, if vy(φ, 0) =

2πm − φ

`
> 0. (5)

A classical electron in the bulk rotate clockwise, and so its
velocity near the boundary disagrees with the orientation
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Fig. 1. Spectrum of Landau Hamiltonians: (a) with chiral
boundary conditions (inset: enlarged box, showing a cusp be-
tween bulk and edge states), (b) with Dirichlet boundary con-
ditions, (c) with APS boundary conditions.

of the boundary. For such an electron we require spec-
tral boundary conditions, (Dmf)(0) = 0, which are m-
dependent elastic boundary conditions (an interpolation
between Neumann and Dirichlet). A classical skipping or-
bit moves in a direction that agrees with the orientation
of the boundary, and for positive velocity on the bound-
ary we impose Neumann boundary condition. We shall say
more on the reasons for choosing spectral and Neumann
for the different chiralities below.
Since both the differential operator, and the boundary

conditions are defined in terms of velocity, gauge invari-
ance is manifest. Moreover, it can be checked that the
boundary conditions in equation (5) define a self-adjoint
eigenvalue problem, which we shall call the chiral Lan-
dau Hamiltonian. The spectrum and eigenfunctions can
be described in terms of special functions [7].
The bulk space Hb is defined by

Hb =
⊕

2πm≤φ e
2πimy/`fm(x), (6)

where fm are the eigenfunctions of the chiral Landau
Hamiltonian that satisfy spectral boundary condition.He,
the space of edge states, is the orthogonal complement.
The spectrum for the chiral Landau Hamiltonian is shown
in Figure 1a as a collection of curves plotted as functions of
the velocity on the boundary. The bulk spectrum is deter-
mined by the left part of the figure i.e. by negative values
of the velocity and the edge spectrum by the right part
(positive values). The ground state of the bulk spectrum
has energy B/2 which corresponds to the lowest Landau
level in the plane (doubly infinite cylinder). Like it, it is
infinitely degenerate. This turns out to be a property of
chiral boundary conditions that holds for a large class of
billiards: the ground state of the bulk spectrum has en-
ergy B/2 and the degeneracy is (an integer close to) the
total flux through the billiard. The present case where the
total flux is infinite is an example. The bulk ground state
is separated by a gap B from the first excited bulk state.
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For the excited bulk states the situation is more com-
plicated, and one general statement is that the essential
bulk spectrum coincides with the spectrum of the Landau
Hamiltonian in the plane: that is, the bulk spectrum dif-
fers from the Landau spectrum by at most a discrete set
of eigenvalues.
The edge spectrum, in contrast, is, for any finite

boundary length `, purely discrete (the essential spectrum
is empty). In the thermodynamic limit ` → ∞ the edge
spectrum becomes gapless. The slope of the curves de-
scribing the edge spectrum gives a linear dispersion with
a finite sound velocity as vy(φ, 0) ↘ 0. In particular, for
the lowest edge branch one has, in the limit ` → ∞, a
unique sound velocity for the chiral edge currents:

∂E0

∂vy

∣∣∣
0
=

√
B

π
· (7)

This fixes the k in equation (1) in this case. It is worth em-
phasizing the existence of the discontinuity in derivative
between bulk states and the corresponding edge branch as
shown in Figure 1a.
It is instructive to compare the spectral properties of

the Chiral Landau Hamiltonian with the Dirichlet Landau
model, where one replaces equation (5) by the requirement
fm(0) = 0 for all m. This too can be solved explicitly in
terms of special functions [7] and the spectrum is shown
in Figure 1b. The corresponding curves are analytic func-
tions. This has some immediate implications: First, there
is no sharp line of divide between edge and bulk for the
single particle Hamiltonians, second, there is no natural
sound velocity because the dispersion law is not linear at
small energies, and finally, there is no macroscopic degen-
eracy of the ground state (or any other state).
The chiral boundary condition equation (5) is a close

relative of boundary conditions introduced in [4]. APS
boundary condition replaces equation (5) by(

d

dx
−
2πm− φ

`

)
fm

∣∣∣
x=0
= 0 if vy(φ, 0) ≤ 0;

fm

∣∣∣
x=0
= 0 if vy(φ, 0) > 0. (8)

That is, the Neumann piece for the edge states is replaced
by Dirichlet. Here too there is a sharp divide of the states
according to their chirality. But, in APS the putative edge
states with the good chirality are forced to have vanishing
density near the boundary and tend to be pushed away
from the edge. These can not be bona fide edge states.
The APS Landau Hamiltonian can be solved explicitly
for the problem at hand, and the spectrum is shown in
Figure 1c. The glaring difference with Figure 1a is that
now the energy curves are discontinuous. This disconti-
nuity has undesirable features for studying spectral flows
and transport in quantum mechanics.
Consider now the spectral flow resulting from the in-

crease of the threading flux φ by a unit of quantum flux:
φ → φ + 2π. By inspection of Figure 1 one sees that all
states in the diagrams move one notch to the left. In the
chiral and APS cases which have a clear divide between

chiralities we see that each branch of the good chirality
looses a state and each branch of the bad chirality gains
one. In the chiral case (Fig. 1a) one can follow continu-
ously each state as its chirality changes. In Figure 1c this
is not the case. Chiral boundary conditions therefore give
a way of counting the charge being transport from bulk to
edge. The same spectral flow takes place for the Dirichlet
spectrum except that here what is edge and what is bulk
is a vague notion which does not allow for counting the
states that move from edge to bulk. In the case of APS
the notion of edge and bulk is sharp, but because of the
discontinuity of the curves in Figure 1c there is no way to
identify the flow of bulk to edge.
It is also instructive to examine how chiral boundary

conditions are related to Laughlin states. As we shall see,
Laughlin states for filling fraction 1/M, M an odd integer,
are bulk states with maximal density.
To simplify the notation let us take a cylinder of area

2π, M = {(x, y) | −1 ≤ x ≤ 0, 0 ≤ y < 2π}.We shall take
φ = 0 in what follows. The Laughlin state of the (doubly
infinite) cylinder for filling fraction 1/M , with M odd is
[9]

ψL =
∏

1≤j<k≤N

(
e−zj − e−zk

)M ∏
1≤k≤N

e−Bx
2
k/2+mzk . (9)

Here z = x + iy and m ∈ ZZ. Fix a particle, say z = z1.
As a function of z, ψL has the form(
A1e

−M(N−1)z +A2e
−M(N−2)z + . . .

)
e−Bx

2/2+mz (10)

whereAj are independent of z. The chiral boundary condi-
tions for z need to be imposed on the two bounding circles
at x = 0 and x = −1 with opposite orientations. Since ψL
is in the kernel of D, (DψL = 0), the spectral boundary
conditions are automatically satisfied. So, all that needs
to be checked is that the velocity on the two bounding
circles is anti-chiral. That is:

m+B ≥M(N − j) ≥ m, (11)

for all 1 ≤ j ≤ N . j = N sets m = 0, and j = 1 sets an
upper bound on the number of electron that the Laughlin
state may accommodate and still satisfy the chiral bound-
ary conditions: N ≤ 1+B/M . Recall that the area of the
cylinder is 2π, so that B is the total flux in units of quan-
tum flux. In the (thermodynamic) limit of large flux the
maximal filling is N/B → 1/M , which is what Laughlin
plasma argument gives [8].
The case of other separable billiards, such as a circular

disc can be treated in a similar way. For separable billiard
of finite area the degeneracy of the chiral bulk ground
state can be shown to be related to the total flux. These
issues will be described elsewhere [10].
We now turn to the description of the chiral bound-

ary conditions for more general Schrödinger operators and
give further motivation for them. It turns out that once
chiral boundary conditions have been formulated for the
non separable case further generalization to Schrödinger
operators with background potential and to multielectron
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systems where electrons are allowed to interact, follow.
For the sake of simplicity and concreteness we shall stick to
one electron billiards. Moreover, to avoid writing compli-
cated formulas, we shall assume that the two-dimensional
manifold M is (metrically) cylindrical near its boundary
∂M.
It is instructive to formulate the chiral boundary con-

ditions in terms of quadratic forms, and to compare them
with the classical boundary conditions, Dirichlet and Neu-
mann. A positive quadratic form, Q(ϕ), on a dense do-
main, uniquely defines a self-adjoint operator [11]. The
nice thing about quadratic forms is that the boundary
conditions are part of the form and suggest a physical in-
terpretation. Let 〈·|·〉M stands for the scalar product in
L2(M) and 〈·|·〉∂M for the scalar product on the boundary
of M. C∞(M) is the space of smooth functions on M. The
quadratic form

Q(ϕ) = 〈∇ϕ|∇ϕ〉M + λ 〈ϕ|ϕ〉∂M (12)

with ϕ ∈ C∞(M) and 0 ≤ λ <∞, describes for λ = 0 the
Neumann problem and for λ → ∞ the Dirichlet problem
for the Laplacian ∆. For finite λ one has elastic boundary
conditions. The Neumann problem says that the boundary
term gives no penalty (in energy) if there is density on the
boundary, while, Dirichlet says that the penalty is large
and so finite energies have zero density on the boundary. It
is a consequence of the quadratic form and the variational
principle that the Dirichlet spectrum have energies above
the Neumann spectrum.
Dirichlet and Neumann associate a penalty for den-

sity at the boundary. Chiral boundary conditions asso-
ciate a penalty for a chirality. Since we want edge states
(which have positive chirality) to pay a price and bulk
states (which have negative chirality) not to affected by
the boundary, a quadratic form which does that in the
presence of gauge fields is:

Qc(ϕ) = 〈Dϕ|Dϕ〉M + λ
〈
ϕ
∣∣∣v+ϕ〉

∂M

v+ =

{
vy if vy > 0;

0 otherwise,
(13)

where ϕ ∈ C∞(M), 0 ≤ λ < ∞ and vy is the operator
of (tangential) velocity on the boundary. Now, in contrast
to the Dirichlet-Neumann case discussed above, λ is di-
mensionless. To see what equation (13) implies for the
boundary conditions we need to go to the operator and
its domain. The domain of D†D consists of all smooth
functions, such that

〈Dϕ|D·〉M + λ
〈
ϕ
∣∣∣v+ · 〉

∂M
(14)

is a L2–bounded linear functional. Integration by parts in
the variable x leads to

〈D†Dϕ| ·〉M +
〈
(D + λv+)ϕ

∣∣∣ · 〉
∂M
. (15)

For this to define a linear functional, the term on the
boundary must vanish identically for all ϕ in the domain

of D†D. If we write ϕ = ϕ+ + ϕ−, where ϕ+ restricted to
∂M belongs to the positive spectral subspace of vy this do-
main is defined by: (dx+(λ− 1)vy)ϕ+ = 0 and Dϕ− = 0.
λ = 0 gives spectral boundary condition for both chirali-
ties. λ = 1 gives spectral boundary conditions for negative
chiralities and Neumann for positive chiralities. This gives
the chiral boundary conditions equation (13). λ =∞ gives
the APS boundary conditions. In principle, one could take
λ as a parameter in the theory, fixed by the sound velocity
for the edge states. λ = 1 is distinguished in tending to
maximize the density of the edge states at the boundary.
The quadratic form is gauge invariant, non-negative

and defines a non-negative, gauge invariant Hamiltonian
associated to kinetic energy: HL = D

†D ≥ 0.
Chiral Schrödinger Hamiltonians define a self-adjoint

eigenvalue problem. This is true irrespective of whether
the problem is separable or not; if there is a background
scalar potential or not, and even if one considers a one
electron theory or a multielectron Hamiltonian. However,
only in the separable one particle case (and slightly more
general but still special cases), does one have a clean split-
ting of the eigenspaces of the Hamiltonian into two pieces:
He and Hb. In general, an eigenstate ϕ will have both a
non-zero ϕ+ and ϕ− piece, and the spectral subspaces do
not split cleanly. The best one might expect in the non sep-
arable case is that in certain limits eigenstates will have a
dichotomy. Namely, either ϕ− or ϕ+ will be small in the
limit for every eigenstate. Examination of simple examples
suggests that in the limit of large magnetic fields, B →∞,
there is such an asymptotic splitting. It would be interest-
ing to formulate a splitting principle in the multiparticle
Fock space.
In summary: the basic result is that a certain choice

of mixed boundary conditions (chiral) gives a clean sepa-
ration between states identifiable as bulk and edge states.
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